Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Gene ; : 147097, 2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2235150

ABSTRACT

COVID-19 related morbidities and mortalities are still continued due to the emergence of new variants of SARS-CoV-2. In the last few years, viral miRNAs have been the centre of study to understand the disease pathophysiology. In this work, we aimed to predict the change in coding potential of the viral miRNAs in SARS-CoV-2's VOCs, Delta and Omicron compared to the Reference (Wuhan origin) strain using bioinformatics tools. After ab-intio based screening by the Vmir tool and validation, we retrieved 22, 6, and 6 pre-miRNAs for Reference, Delta, and Omicron. Most of the predicted unique pre-miRNAs of Delta and Omicron were found to be encoded from the terminal and origin of the genomic sequence, respectively. Mature miRNAs identified by MatureBayes from the unique pre-miRNAs were used for target identification using miRDB. A total of 1786, 216, and 143 high-confidence target genes were captured for GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. The GO and KEGG pathways terms analysis revealed the involvement of Delta miRNAs targeted genes in the pathways such as Human cytomegalovirus infection, Breast cancer, Apoptosis, Neurotrophin signaling, and Axon guidance whereas the Sphingolipid signaling pathway was found for the Omicron. Furthermore, we focussed our analysis on target genes that were validated through GEO's (Gene Expression Omnibus) DEGs (Differentially Expressed Genes) dataset, in which FGL2, TNSF12, OGN, GDF11, and BMP11 target genes were found to be down-regulated by Reference miRNAs and YAE1 and RSU1 by Delta. Few genes were also observed to be validated among in up-regulated gene set of the GEO dataset, in which MMP14, TNFRSF21, SGMS1, and TMEM192 were related to Reference whereas ZEB2 was detected in all three strains. This study thus provides an in-silico based analysis that deciphered the unique pre-miRNAs in Delta and Omicron compared to Reference. However, the findings need future wet lab studies for validation.

2.
Colloids Surf B Biointerfaces ; 211: 112303, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1588041

ABSTRACT

The decreasing effectiveness of conventional drugs due to multidrug-resistance is a major challenge for the scientific community, necessitating development of novel antimicrobial agents. In the present era of coronavirus 2 (COVID-19) pandemic, patients are being widely exposed to antimicrobial drugs and hence the problem of multidrug-resistance shall be aggravated in the days to come. Consequently, revisiting the phenomena of multidrug resistance leading to formulation of effective antimicrobial agents is the need of the hour. As a result, this review sheds light on the looming crisis of multidrug resistance in wake of the COVID-19 pandemic. It highlights the problem, significance and approaches for tackling microbial resistance with special emphasis on anti-microbial peptides as next-generation therapeutics against multidrug resistance associated diseases. Antimicrobial peptides exhibit exceptional mechanism of action enabling rapid killing of microbes at low concentration, antibiofilm activity, immunomodulatory properties along with a low tendency for resistance development providing them an edge over conventional antibiotics. The review is unique as it discusses the mode of action, pharmacodynamic properties and application of antimicrobial peptides in areas ranging from therapeutics to agriculture.


Subject(s)
COVID-19 , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Humans , Microbial Sensitivity Tests , Pandemics , Peptides/pharmacology , SARS-CoV-2
3.
Mol Biol Res Commun ; 9(2): 83-91, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-613813

ABSTRACT

The current outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China threatened humankind worldwide. The coronaviruses contains the largest RNA genome among all other known RNA viruses, therefore the disease etiology can be understood by analyzing the genome sequence of SARS-CoV-2. In this study, we used an ab-intio based computational tool VMir to scan the complete genome of SARS-CoV-2 to predict pre-miRNAs. The potential pre-miRNAs were identified by ViralMir and mature miRNAs were recognized by Mature Bayes. Additionally, predicted mature miRNAs were analysed against human genome by miRDB server to retrieve target genes. Besides that we also retrieved GO (Gene Ontology) terms for pathways, functions and cellular components. We predicted 26 mature miRNAs from genome of SARS-CoV-2 that targets human genes involved in pathways like EGF receptor signaling, apoptosis signaling, VEGF signaling, FGF receptor signaling. Gene enrichment tool analysis and substantial literature evidences suggests role of genes like BMPR2 and p53 in pulmonary vasculature and antiviral innate immunity respectively. Our findings may help research community to understand virus pathogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL